Uniform and Concentric Circular Antenna Arrays Synthesis for Smart Antenna Systems Using Artificial Neural Network Algorithm
نویسندگان
چکیده
Recently, researchers were interested in neural algorithms for optimization problems for several communication systems. This paper shows a novel algorithm based on neural technique presented to enhance the performance analysis of beam-forming in smart antenna technology using N elements for Uniform Circular Array (UCA) and Concentric Circular Array (CCA) geometries. To demonstrate the effectiveness and reliability of the proposed approach, simulation results are carried out in MATLAB. The radiators are considered isotropic, and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing structures in terms of 3-D scanning, size, directivity, HPBW and SLL reduction. The results show that multilayer feed-forward neural networks are robust and can solve complex antenna problems. However, artificial neural network (ANN) is able to generate very fast the results of synthesis by using generalization with early stopping method. Important gain in the running time and memory used is obtained using this latter method for improving generalization (called early stopping). To validate this work, several examples are shown.
منابع مشابه
A Comparison between Circular and Hexagonal Array Geometries for Smart Antenna Systems Using Particle Swarm Optimization Algorithm
In this paper, circular and hexagonal array geometries for smart antenna applications are compared. Uniform circular (UCA) and hexagonal arrays (UHA) with 18 half-wave dipole elements are examined; also planar (2 concentric rings of radiators) uniform circular (PUCA) and hexagonal arrays (PUHA) are considered. The effect of rotating the outer ring of the PUCA is studied. In our analysis, the me...
متن کاملPhase Only Synthesis of Antenna Patterns Using Iterative Restoration Methods
In this work, the method of iterative Fourier transform phase reconstruction, conventionally used in holography and optical image reconstruction, is applied to phase only synthesis of antenna patterns. The method is applied to two types of pattern synthesis problems: "main lobe beam shaping" and "side-lobe-level reduction". The proposed method is most useful in the efficient employment of attai...
متن کاملSynthesis of Thinned Concentric Ring Array with Dipole Radiators Using Firefly Algorithm
The application of new metaheuristic approach, Firefly algorithm, for the thinning of large multiple Concentric Circular dipole arrays is presented. A nine-ring Uniform Circular antenna array with central element feeding is considered. To analyze the effect of thinning, optimization is carried out with and without pre fixing the percentage value of thinning. The performance of the array in term...
متن کاملSmart Antenna Design Using Neural Networks
Optimizing antenna arrays to approximate desired far field radiation patterns is of exceptional interest in smart antenna technology. This paper shows how to apply artificial intelligence, in the form of neural networks, to achieve specific beam-forming with linear antenna arrays. Multilayer feed-forward neural networks are used to maximize multiple main beams’ radiation of a linear antenna arr...
متن کاملSynthesis of Antenna Arrays of Maximum Directivity for a Specified Sidelobe Level
Linear and planar antenna arrays are synthesized to have maximum directivity for a specified sidelobe level. The directivity is maximized subject to a given SLL. The beamwidth and the zeros of array factor are studied as well as the directivity. Maximum directivity-arrays are compared through some examples with super-directive, uniform, Dolph-Chebyshev and Riblet-Chebychev arrays to find a comp...
متن کامل